library(RScelestial)
# We load igraph for drawing trees. If you do not want to draw,
# there is no need to import igraph.
library(igraph)
#>
#> Attaching package: 'igraph'
#> The following objects are masked from 'package:stats':
#>
#> decompose, spectrum
#> The following object is masked from 'package:base':
#>
#> union
The RScelestial package could be installed easily as follows
Here we show a simulation. We build a data set with following command.
# Following command generates ten samples with 20 loci.
# Rate of mutations on each edge of the evolutionary tree is 1.5.
D = synthesis(10, 20, 5, seed = 7)
D
#> $seqeunce
#> C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
#> L1 0 0 0 3 0 1 0 3 0 0
#> L2 3 3 3 3 3 3 3 3 0 3
#> L3 0 3 3 0 3 1 0 0 0 3
#> L4 1 0 3 3 1 3 0 1 0 3
#> L5 0 3 3 1 3 3 0 0 0 0
#> L6 3 3 0 3 0 3 3 3 3 3
#> L7 0 0 0 0 3 0 3 0 3 0
#> L8 3 1 0 1 0 3 1 3 3 1
#> L9 0 0 3 3 3 3 3 0 0 3
#> L10 3 3 0 1 3 0 3 3 1 0
#> L11 0 3 0 0 0 0 3 1 3 0
#> L12 3 3 3 0 0 0 3 0 3 3
#> L13 3 1 1 3 0 3 0 0 0 3
#> L14 3 0 0 0 1 3 0 3 3 0
#> L15 0 3 0 3 0 0 3 3 1 0
#> L16 3 0 3 0 3 0 3 0 3 0
#> L17 3 3 0 3 3 3 0 3 1 3
#> L18 0 0 3 3 3 0 1 3 0 3
#> L19 3 3 0 1 3 0 0 3 0 3
#> L20 3 1 3 0 1 3 3 3 3 0
#>
#> $true.sequence
#> C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
#> L1 0 0 0 0 0 0 0 0 0 0
#> L2 0 0 0 0 0 0 0 0 0 0
#> L3 0 0 0 0 0 0 0 0 0 0
#> L4 0 0 0 0 0 0 0 0 0 0
#> L5 0 0 0 0 0 0 0 0 0 0
#> L6 0 0 0 0 0 0 0 0 0 0
#> L7 0 0 0 0 0 0 0 0 0 0
#> L8 0 0 0 1 0 0 1 0 1 1
#> L9 0 0 0 0 0 0 0 0 0 0
#> L10 0 0 0 0 0 0 0 0 0 0
#> L11 0 0 0 0 0 0 0 0 0 0
#> L12 0 0 0 0 0 0 0 0 0 0
#> L13 0 0 0 0 0 0 0 0 0 0
#> L14 0 0 0 0 0 0 0 0 0 0
#> L15 0 0 0 0 0 0 0 0 0 0
#> L16 0 0 0 0 0 0 0 0 0 0
#> L17 0 0 0 0 0 0 0 0 0 0
#> L18 0 0 0 0 0 0 0 0 0 0
#> L19 0 0 0 0 0 0 0 0 0 0
#> L20 0 0 0 0 0 0 0 0 0 0
#>
#> $true.clone
#> $true.clone$N1
#> [1] "C2" "C6"
#>
#> $true.clone$N2
#> [1] "C5"
#>
#> $true.clone$N3
#> [1] "C1" "C8"
#>
#> $true.clone$N4
#> [1] "C3"
#>
#> $true.clone$N6
#> [1] "C4" "C7" "C9" "C10"
#>
#>
#> $true.tree
#> src dest len
#> 1 N2 N1 1
#> 2 N3 N2 1
#> 3 N4 N2 1
#> 4 N6 N3 1
seq = as.ten.state.matrix(D$seqeunce)
SP = scelestial(seq, return.graph = TRUE)
SP
#> $input
#> V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19
#> C1 A/A ./. A/A C/C A/A ./. A/A ./. A/A ./. A/A ./. ./. ./. A/A ./. ./. A/A ./.
#> C10 A/A ./. ./. ./. A/A ./. A/A C/C ./. A/A A/A ./. ./. A/A A/A A/A ./. ./. ./.
#> C2 A/A ./. ./. A/A ./. ./. A/A C/C A/A ./. ./. ./. C/C A/A ./. A/A ./. A/A ./.
#> C3 A/A ./. ./. ./. ./. A/A A/A A/A ./. A/A A/A ./. C/C A/A A/A ./. A/A ./. A/A
#> C4 ./. ./. A/A ./. C/C ./. A/A C/C ./. C/C A/A A/A ./. A/A ./. A/A ./. ./. C/C
#> C5 A/A ./. ./. C/C ./. A/A ./. A/A ./. ./. A/A A/A A/A C/C A/A ./. ./. ./. ./.
#> C6 C/C ./. C/C ./. ./. ./. A/A ./. ./. A/A A/A A/A ./. ./. A/A A/A ./. A/A A/A
#> C7 A/A ./. A/A A/A A/A ./. ./. C/C ./. ./. ./. ./. A/A A/A ./. ./. A/A C/C A/A
#> C8 ./. ./. A/A C/C A/A ./. A/A ./. A/A ./. C/C A/A A/A ./. ./. A/A ./. ./. ./.
#> C9 A/A A/A A/A A/A A/A ./. ./. ./. A/A C/C ./. ./. A/A ./. C/C ./. C/C A/A A/A
#> V20
#> C1 ./.
#> C10 A/A
#> C2 C/C
#> C3 ./.
#> C4 A/A
#> C5 C/C
#> C6 ./.
#> C7 ./.
#> C8 ./.
#> C9 ./.
#>
#> $sequence
#> V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19
#> C1 A/A A/A A/A C/C A/A A/A A/A C/C A/A A/A A/A A/A A/A A/A A/A A/A C/C A/A A/A
#> C10 A/A A/A A/A A/A A/A A/A A/A C/C A/A A/A A/A A/A A/A A/A A/A A/A A/A A/A A/A
#> C2 A/A A/A A/A A/A A/A A/A A/A C/C A/A A/A A/A A/A C/C A/A A/A A/A A/A A/A A/A
#> C3 A/A A/A A/A A/A A/A A/A A/A A/A A/A A/A A/A A/A C/C A/A A/A A/A A/A A/A A/A
#> C4 A/A A/A A/A A/A C/C A/A A/A C/C A/A C/C A/A A/A A/A A/A A/A A/A A/A A/A C/C
#> C5 A/A A/A A/A C/C A/A A/A A/A A/A A/A A/A A/A A/A A/A C/C A/A A/A A/A A/A A/A
#> C6 C/C A/A C/C A/A A/A A/A A/A C/C A/A A/A A/A A/A A/A A/A A/A A/A A/A A/A A/A
#> C7 A/A A/A A/A A/A A/A A/A A/A C/C A/A C/C A/A A/A A/A A/A C/C A/A A/A C/C A/A
#> C8 A/A A/A A/A C/C A/A A/A A/A A/A A/A A/A C/C A/A A/A A/A A/A A/A A/A A/A A/A
#> C9 A/A A/A A/A A/A A/A A/A A/A A/A A/A C/C A/A A/A A/A A/A C/C A/A C/C A/A A/A
#> V20
#> C1 A/A
#> C10 A/A
#> C2 C/C
#> C3 A/A
#> C4 A/A
#> C5 C/C
#> C6 A/A
#> C7 A/A
#> C8 A/A
#> C9 A/A
#>
#> $tree
#> src dest len
#> 1 C3 C10 6.00013
#> 2 C1 C8 6.00014
#> 3 C1 C10 6.00015
#> 4 C4 C10 6.25012
#> 5 C7 C9 6.50012
#> 6 C2 C10 6.50014
#> 7 C6 C10 6.50014
#> 8 C1 C5 6.75016
#> 9 C1 C9 7.00013
#>
#> $graph
#> IGRAPH 6d8e171 UNW- 10 9 --
#> + attr: name (v/c), weight (e/n)
#> + edges from 6d8e171 (vertex names):
#> [1] C3 --C10 C1 --C8 C10--C1 C10--C4 C7 --C9 C10--C2 C10--C6 C1 --C5
#> [9] C1 --C9
You can draw the graph with following command
Also, we can make a rooted tree with cell “C8” as the root of the tree as follows:
SP = scelestial(seq, root.assign.method = "fix", root = "C8", return.graph = TRUE)
#> [1] "C8 -1"
#> [1] "C1 C8"
#> [1] "C10 C1"
#> [1] "C3 C10"
#> [1] "C4 C10"
#> [1] "C2 C10"
#> [1] "C6 C10"
#> [1] "C5 C1"
#> [1] "C9 C1"
#> [1] "C7 C9"
tree.plot(SP, vertex.size = 30)
Setting root.assign.method to “balance” lets the algorithm decide for a root that produces minimum height tree.
SP = scelestial(seq, root.assign.method = "balance", return.graph = TRUE)
#> [1] "C1 -1"
#> [1] "C8 C1"
#> [1] "C10 C1"
#> [1] "C3 C10"
#> [1] "C4 C10"
#> [1] "C2 C10"
#> [1] "C6 C10"
#> [1] "C5 C1"
#> [1] "C9 C1"
#> [1] "C7 C9"
#> [1] "C1 -1"
#> [1] "C8 C1"
#> [1] "C10 C1"
#> [1] "C3 C10"
#> [1] "C4 C10"
#> [1] "C2 C10"
#> [1] "C6 C10"
#> [1] "C5 C1"
#> [1] "C9 C1"
#> [1] "C7 C9"
tree.plot(SP, vertex.size = 30)
Following command calculates the distance array between pairs of samples.
D.distance.matrix <- distance.matrix.true.tree(D)
D.distance.matrix
#> C2 C6 C5 C1 C8 C3
#> C2 0.000000000 0.000000000 0.006849315 0.013698630 0.013698630 0.013698630
#> C6 0.000000000 0.000000000 0.006849315 0.013698630 0.013698630 0.013698630
#> C5 0.006849315 0.006849315 0.000000000 0.006849315 0.006849315 0.006849315
#> C1 0.013698630 0.013698630 0.006849315 0.000000000 0.000000000 0.013698630
#> C8 0.013698630 0.013698630 0.006849315 0.000000000 0.000000000 0.013698630
#> C3 0.013698630 0.013698630 0.006849315 0.013698630 0.013698630 0.000000000
#> C4 0.020547945 0.020547945 0.013698630 0.006849315 0.006849315 0.020547945
#> C7 0.020547945 0.020547945 0.013698630 0.006849315 0.006849315 0.020547945
#> C9 0.020547945 0.020547945 0.013698630 0.006849315 0.006849315 0.020547945
#> C10 0.020547945 0.020547945 0.013698630 0.006849315 0.006849315 0.020547945
#> C4 C7 C9 C10
#> C2 0.020547945 0.020547945 0.020547945 0.020547945
#> C6 0.020547945 0.020547945 0.020547945 0.020547945
#> C5 0.013698630 0.013698630 0.013698630 0.013698630
#> C1 0.006849315 0.006849315 0.006849315 0.006849315
#> C8 0.006849315 0.006849315 0.006849315 0.006849315
#> C3 0.020547945 0.020547945 0.020547945 0.020547945
#> C4 0.000000000 0.000000000 0.000000000 0.000000000
#> C7 0.000000000 0.000000000 0.000000000 0.000000000
#> C9 0.000000000 0.000000000 0.000000000 0.000000000
#> C10 0.000000000 0.000000000 0.000000000 0.000000000
SP.distance.matrix <- distance.matrix.scelestial(SP)
SP.distance.matrix
#> C1 C10 C2 C3 C4 C5
#> C1 0.000000000 0.004528317 0.009433976 0.009056619 0.009245286 0.005094350
#> C10 0.004528317 0.000000000 0.004905660 0.004528302 0.004716969 0.009622667
#> C2 0.009433976 0.004905660 0.000000000 0.009433961 0.009622629 0.014528326
#> C3 0.009056619 0.004528302 0.009433961 0.000000000 0.009245271 0.014150968
#> C4 0.009245286 0.004716969 0.009622629 0.009245271 0.000000000 0.014339636
#> C5 0.005094350 0.009622667 0.014528326 0.014150968 0.014339636 0.000000000
#> C6 0.009433976 0.004905660 0.009811319 0.009433961 0.009622629 0.014528326
#> C7 0.010188647 0.014716964 0.019622623 0.019245265 0.019433933 0.015282997
#> C8 0.004528309 0.009056626 0.013962286 0.013584928 0.013773595 0.009622659
#> C9 0.005283002 0.009811319 0.014716979 0.014339621 0.014528288 0.010377352
#> C6 C7 C8 C9
#> C1 0.009433976 0.010188647 0.004528309 0.005283002
#> C10 0.004905660 0.014716964 0.009056626 0.009811319
#> C2 0.009811319 0.019622623 0.013962286 0.014716979
#> C3 0.009433961 0.019245265 0.013584928 0.014339621
#> C4 0.009622629 0.019433933 0.013773595 0.014528288
#> C5 0.014528326 0.015282997 0.009622659 0.010377352
#> C6 0.000000000 0.019622623 0.013962286 0.014716979
#> C7 0.019622623 0.000000000 0.014716956 0.004905644
#> C8 0.013962286 0.014716956 0.000000000 0.009811312
#> C9 0.014716979 0.004905644 0.009811312 0.000000000
## Difference between normalized distance matrices
vertices <- rownames(SP.distance.matrix)
sum(abs(D.distance.matrix[vertices,vertices] - SP.distance.matrix))
#> [1] 0.5453399
Given a multiple sequence alignment, Scelestial infers the phylogeny of them. Here we present a simple example. First we load libraries to load a multiple alignment.
library(stringr)
if (!require("seqinr")) install.packages("seqinr")
#> Loading required package: seqinr
library(seqinr)
In this example, we load a multiple alignment from seqinr package.
Then we clean the data and build a zero-one matrix representing taxa and characters. Note that Scelestial accept matrices with taxa as its columns and characters as its rows.
# Removing non-informative columns and duplicate rows.
mcb <- toupper(t(sapply(seq(phylip$seq), function(i) unlist(strsplit(phylip$seq[[i]], '')))))
ccb <- as.character(phylip$seq)
occb <- order(ccb)
cbColMask <- sapply(seq(ncol(mcb)), function(j) length(levels(as.factor(mcb[,j]))) == 1)
cbRowMask <- rep(TRUE, length(ccb))
for (i in seq(length(ccb))) {
if (i == 1 || ccb[occb[i]] != ccb[occb[i-1]]) {
cbRowMask[occb[i]] <- FALSE
}
}
mcbRows <- apply(mcb[!cbRowMask, !cbColMask], MARGIN = 1, FUN = function(a) paste0(str_replace(a, "-", "X"), collapse = ""))
Executing Scelestial on the input matrix.